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The effect on the electron-ring dynamics when a cyclotron resonance is crossed in a modified betatron
accelerator has been studied analytically and numerically. It has been found that, in the presence of
small vertical field errors, there is a field-error-amplitude threshold below which the normalized trans-
verse velocity B, of the gyrating electrons is bounded (Fresnel regime) and above which it is unbounded
(lock-in regime). In the lock-in regime, the average value of the normalized axial (toroidal) momentum
vYByg, where v is the relativistic factor and By is the normalized axial velocity, remains constant, i.e., the
resonance is never crossed. In addition, above threshold, 3, increases proportionally to the square root
of the time. The threshold value of the vertical field error amplitude can be made larger either by in-
creasing the acceleration rate or by adding a small oscillatory toroidal field to the main toroidal field.
The multiple crossing of the same resonance, in the presence of such a small oscillatory toroidal field,

was also studied with some interesting results.

PACS number(s): 41.75.Fr, 41.85.Lc, 29.27.Bd

I. INTRODUCTION

There is extensive experimental evidence suggesting
that the gradual beam loss that is observed in the Naval
Research Laboratory (NRL) modified betatron accelera-
tor (MBA) is a consequence of crossing various cyclotron
resonance modes during acceleration [1,2]. The cyclo-
tron resonance is due to the excitation of the cyclotron
motion by field errors associated with the toroidal and
vertical magnetic fields. Consequently, these field errors
can be either a vertical-field 6B, (VF) error or an axial-
(toroidal) field 6B, (TF) error or both.

Recirculating accelerators with low accelerating gra-
dient such as the existing NRL modified betatron are sen-
sitive to field errors, because the electrons have to per-
form a large number of revolutions around the major axis
in order to obtain the desired peak energy. Successful
detection and elimination or reduction of several field er-
rors in the NRL device led to beam energies in excess of
20 MeV, while the trapped current is above 1 kA [3].

Although the cyclotron resonance is a potent mecha-
nism with the potential to disturb the beam at a low ac-
celeration rate and when the various fields are not care-
fully designed, it also may provide a powerful technique
for extracting the beam from the magnetic-field
configuration of the modified betatron [4]. The study of
the cyclotron resonances is facilitated by introducing the
detuning factor w =r,Qg/yBec — I, where r; is the major
radius of the torus, c is the velocity of light, y is the rela-
tivistic factor, B, is the normalized toroidal velocity,
Qgo=le|B g /mc, By is the toroidal magnetic field on the
minor axis, e and m are the charge and mass of the elec-
tron, and / is the mode number of the resonance. The /
mode of the cyclotron resonance occurs when the ratio of
the toroidal field By, to the vertical field B,, is approxi-
mately equal to I Since at equilibrium the ratio
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roQ,0/vBgc is approximately unity, at least when the
beam current is low and in the absence of strong focus-
ing, the I-mode cyclotron resonance is crossed when the
detuning factor is zero. Furthermore, the detuning factor
appears naturally in the slow equations of motion derived
by averaging out the fast cyclotron motion. The fact that
w +1 is inversely proportional to yB, has a profound
effect on the ring dynamics. The quantity y 84 has a non-
linear dependence on the normalized perpendicular ve-
locity B,, and, as a consequence, there is a threshold for
the vertical field error amplitude below which B, is
bounded (Fresnel regime) and above which B, increases
continuously (lock-in regime) with time. In the lock-in
regime, the detuning factor remains almost zero long
after the resonance has been reached and, therefore, the
resonance is never crossed. In addition, above threshold,
B, increases proportionally to the square root of time
while Y[, remains, on the average, a constant. The
threshold value of the vertical field error amplitude can
be made larger either by increasing the acceleration rate
or by adding a small oscillatory toroidal field to the main
toroidal field. The latter method is called dynamic stabil-
ization of the resonance.

In the case of a vertical field error and in the absence of
acceleration, space charge, and strong focusing field, our
studies of the cyclotron resonances show that the normal-
ized transverse velocity 3, and thus the Larmor radius of
the transverse motion of the gyrating particles grows
linearly with time [5], provided that nonlinear effects as-
sociated with yf3, are neglected. When such effects are
taken into account, | is periodic and bounded.

As mentioned previously, in the presence of an ac-
celerating field and of a large vertical field error, 3, in-
creases proportionally to the square root of time while
v By saturates, i.e., the electrons lock into a specific reso-
nance (lock-in regime). When the amplitude of 8B, is
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below the threshold, B, exhibits Fresnel behavior, i.e., B,
grows quickly for approximately 1 usec and then satu-
rates until the beam reaches the next resonance.

In the case of an axial field error and in the absence of
acceleration, when the ring is initially at exact resonance,
B, grows exponentially with time only for a very short
period. Since B, increases at the expense of S, the parti-
cles are kicked off resonance and f3, varies cyclicly with
time. Similarly, in the presence of an accelerating field 3,
behaves as in the case of the vertical field error, i.e.,
below threshold it exhibits the Fresnel behavior and
above threshold the ring locks into the resonance. The
same is also true during acceleration even in the absence
of a vertical or toroidal field error, but in the presence of
stellarator fields of periodicity m, when the quasiequili-
brium position of the ring is off the magnetic axis of the
strong focusing system and the resonance mode is equal
to m. The results of the studies with axial field error will
be reported in a future publication. In the absence of a
toroidal magnetic field, nonlinear effects associated with
the crossing of resonances in synchrotrons have been con-
sidered previously by DePackh [6].

The preceding discussion is based on the assumption
that the space charge is low and the strong focusing field
is zero. In addition to introducing new characteristic
modes, the strong focusing field makes the expression for
the regular cyclotron mode more complicated [7]. How-
ever, it can be shown that for the parameters of the NRL
device and provided / >> 1, the strong focusing has only a
minor effect on the cyclotron resonance. This conclusion
is supported by extensive computer calculations.

This paper is organized as follows. The theoretical
model is formulated in Sec. II. Section III A contains ex-
amples of both the Fresnel and lock-in state from the ex-
act equations of motion. The slow equations of motion
are derived in Sec. III B, and the simplified slow equa-
tions of motion with linearized detuning factor are given
in Sec. III C. The asymptotic behavior in the Fresnel and
lock-in state as well as the appropriate initial conditions
to be used in the subsequent sections are presented in Sec.
IV, while Sec. V contains a discussion of possible ways to
cross a resonance without locking into it. Resonance dia-
grams for nonzero initial perpendicular velocity are
displayed in Sec. VI, and the multiple crossing of the
same resonance is demonstrated in Sec. VII. Finally, Sec.
VIII contains the summary and conclusions.

II. MODEL WITH A VERTICAL-FIELD ERROR

Imperfections in the coils that generate the betatron
field could result in a field error. A typical example is
given in Fig. 1, which shows the VF error per kiloampere
of the current circulating in the coils as a function of the
toroidal angle, at » =100 cm. This error is due to a small
straight section in each coil that generates the betatron
field in the vicinity of the power feeds. Table I provides
the Fourier decomposition of the error. The values are
the actual error amplitudes (in G) for a toroidal field
B g, =4650 G as each particular resonance is reached dur-
ing acceleration.

Obviously, near a resonance, only the mode associated
with that resonance is acting on the ring. The contribu-
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FIG. 1. Vertical field error per kiloampere of current in the
coils that generate the betatron field, as a function of the
toroidal angle 6, at » =100 cm, z=0.0 cm.

tion of all the other modes, being far away from the reso-
nance, averages out to zero due to their fast oscillatory
behavior. Therefore the VF error will be expressed in
terms of the particular / mode associated with the reso-
nance under study, i.e.,

r—r

8B, =08B,0K,,—sin(10+6,) , (1a)

ro

7o

8B,=8B,, |1+K,, sin(16+6,) , (1b)

ro

TABLE I. Fourier decomposition of VF error. Actual values
of the VF error at each ! mode for B, =4650 G are listed.

Fourier Fourier cos (Fourier sin (Fourier
mode amplitude amplitude) amplitude)
1 108.2698 81.6151 71.1430
2 1.2152 0.3749 1.1559
3 8.8142 —6.5489 5.8994
4 0.9985 0.0905 0.9944
5 1.0148 —0.3835 —0.9395
6 0.5915 —0.5915 0.0000
7 0.3350 —0.0856 0.3238
8 0.3188 0.0884 —0.3063
9 0.3226 —0.2428 —0.2124
10 0.0759 0.0640 0.0407
11 0.1301 0.0868 —0.0970
12 0.0243 —0.0243 0.0000
13 0.0373 0.0264 0.0264
14 0.0112 0.0088 —0.0069
15 0.0062 —0.0045 0.0042
16 0.0034 0.0008 0.0033
17 0.0010 —0.0010 —0.0002
18 0.0012 —0.0012 0.0000
19 0.0002 —0.0002 0.0000
20 0.0000 0.0000 0.0000
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8B9=8320-;Z—cos(19+60) . (1c)
0

In Egs. (1), 8B,,, 6y, and K,, are the amplitude, the
phase, and the gradient in the radial direction of the /
mode and r;, is the major radius around which the
analysis is carried out. It should be noticed that Egs.
(la)—(1c) satisfy Maxwell’s equations to first order in
toroidal correlations.

The magnetic fields acting on the ring in the MBA are
the betatron, the toroidal, and the stellarator field. For
simplicity, the stellarator field is omitted in the present
analysis. At high energies its contribution to the
confinement of the ring is diminished and abundant com-
puter runs have shown that the main results presented
here are not altered in the presence of the stellarator field
except for resonances / =km, where m is the field period
of the stellarator and k=1,2,... . In the analysis, the
betatron field is approximated by

B®=—nB, %, (2a)
To

r—rg

B®=B, |1—n , (2b)

ro

where n is the field index and B, the field on the minor
axis. Similarly, the toroidal magnetic field is given by
To
By=Bgp— pul (3)
where B, is the field at r =r.

Since the VF error is a sinusoidal function of the
toroidal angle 6, it is convenient to express the equations
of motion in terms of the independent variable 6 rather
than time. In their transformed state, the equations of
motion become

vy | 70%0 1 1 g+ |,
+ (i———+—— -
: vBe 78, P T2 TP |*
rO(Q,+iQZ) 2
=j————(1+P)*+1+P, 4)
YBoc
where the complex variable &=[(r—ry)+iz]/rg,

£'=dE&/d6, £* is the complex conjugate of &, and Q is
the cyclotron frequency, i.e., Q=|e|B /mc. The position
of the ring centroid is given by

r—r
P= =4E+En), (5a)
To
o= =—21;(§—§*). (5b)
|
fi=A+ %(1+A)(§’+§*')+ib§(§+§*)———z—
(7’39
— K E* +EC(E+E*)—
L [1reer 1/2
(yBeh y?—1 ’

— 11 —nC)EE +E*EY)
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The quantity y 8, can be expressed as
- 172
¥Bo= r=1 : (©)
1+ e

(1+PV§

where y is the relativistic factor and its derivative with
respect to 0 is equal to

"0

kl tl
7’3 (¥BoV = (vBo? ‘)’390 21 (&-¢
|y 1o 1&+8
[1 7/390(1+P) Y A

The accelerating electric field is given by

1 .
:’oBzo ’ ®)

Ee ——
where B,, is the time derivative of the betatron field at
r=rqy. Using the rate of change of time that is given by
t'=(ry/cBy)(1+P), it can be shown that

, o 2'
Y = —C— QZO(I+P) 9)
and
, ro .
Qo=—20 ,—L-(1+P) . (10)
0 c OyBo

In the equations given above €, and £, include both the
betatron field and the VF error. Notice that Eq. (4) is a
second-order nonlinear differential equation of the com-
plex quantity £. In terms of £, the position of the ring
centroid is given by Egs. (5), while its normalized velocity
components v,,v, are

By 1B —@ﬁl;

Obviously, the exact set of nonlinear equations given
above is very complicated and difficult to handle. How-
ever, for a ring that has a bounce motion with a small
amplitude, i.e., for small mismatch, and for large -mode
values, it is easy to show that near the resonance
|€| =|&’| /1 and therefore |&| is much smaller than |£&'].
In this case, it is appropriate to linearize Eq. (4) with
respect to & and £*. Under such conditions, Eq. (4)
simplifies to

E'+ibE+K E=F, , (12)

where

g . (11)

—HEE e €

SC[1+E+(1+K,o)E* +L(E +E*)E Isin(10+6,) ,

(13a)



2046
roQd
p=_20 60
('yﬁg)lc
_ rof2z0
(')/Bg)lc
ro6Q
5C= 0 z0 ,
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2 1+ge’
A=1—-C,
KIZC—% >

K,=(1—-n)C—1.

When the mismatch term A is small, then C~1 and
K,~=1—n. Since the term K,£* in f, will be treated as a
perturbation in the derivation of the slow equations of
motion, K, must be small. Therefore we assume that 7 is
close to % Also, since we consider only values of
|€'| <0.2, before the resonance is crossed, terms propor-
tional to |£’|2|£| are omitted when compared to one. The
simplified Eq. (12) is complemented by the derivatives
with respect to 8 of ¥ and r,Q,,/c, which are given by

2
= LCO— on[l+51%§ (14a)
and
ot _ Q]zﬂ A PP (14b)
c c ZO(’}’BQ)] 2

Results from the numerical integration of Eq. (12) and
the exact Eq. (4) are in very good agreement, provided
the initial values of |£/<0.30X1072 and |&'|<0.2.
Therefore Eq. (12) will be used in the derivation of the
slow equations by averaging out the fast cyclotron oscil-
latory motion.

Fresnel Regime
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III. DYNAMIC BEHAVIOR NEAR A RESONANCE:
FRESNEL AND LOCK-IN REGIMES

A. Numerical results from the exact equations

The results from the numerical integration of the exact
equations of motion, i.e., Eq. (4), as a resonance is crossed
during acceleration indicate the following consistent be-
havior: there is a threshold value of the VF error ampli-
tude 8B,,, below which the perpendicular velocity B, of
the gyrating electrons increases by a certain amount as
the resonance is crossed and then it remains relatively
constant, after the resonance has been crossed. Above
the threshold value, 3, keeps increasing with time while
v B remains, on the average, constant, and the resonance
is never crossed, i.e., the ring is locked into the reso-
nance. A typical example of this behavior is shown in
Fig. 2 for the parameters listed in Table II. The thresh-
old value of 8B, is between 0.19 and 0.195 G. Figures
2(a) and 2(c) show 3, versus time below and above thresh-
old, while Figs. 2(b) and 2(d) show the corresponding yf3,
versus time.

It is rather difficult to find from the exact equations of
motion the source of the dynamic behavior shown in Fig.
2. This behavior can be explained by the slow equations
of motion derived in Sec. III B.

To derive the slow equations of motion the instantane-

Lock—in Regime

o.10}
0.2
Qfl 0.05 0.1
(a) (c)
0 0 FIG. 2. B, and yf, vs time obtained from
° 2 4 & 8 0 2 4 & 8 the exact equations of motion [Eq. (4)], in the
18.8 ; Fresnel and lock-in regimes and close to the
1) 18.2 threshold, for the parameters in Table II.
% 18.4 18.1
1801 (b) | 18.0 ()
0 2 4 6 8 0 2 4 6 8
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TABLE II. Parameters of the runs shown in Figs. 2—-6.
Parameter Value
Torus major radius ry 100 cm
Toroidal magnetic field By 2771 G
Vertical magnetic field B,, 305 G
Field index n 0.5
Rate of change of vertical field B,o 2 G/usec
Resonance mode / 9
Amplitude of VF error 6B, 0.190,0.195 G
Constant phase of VF error 6, 0.0
Gradient of VF error K, 0.0
Initial normalized toroidal momentum yf, 17.922
Initial normalized vertical velocity B, 0.0
Initial phase of vertical velocity ¢, 0.0
Initial radial displacement r—r, 0.0 cm
Initial vertical displacement z 0.0 cm
Integration time ¢, 8 usec
ous position of the particle § is decomposed into two and
components. The first is associated with the bounce —i(16+6,)
motion and the second with the cyclotron or fast motion, §=—ivyé,+ che o (16b)

ie., E=E, +E,, where &, =Eexp(—iv, 0),
&.=E&%exp(—iv,0), and v, and v, are the two charac-
teristic frequencies of the system. Specifically, v, =v_
and v, =v_, where

b

Vi=‘§‘i

2 172
+K, ] : (15)

The complex amplitudes & and & are, in general,
slowly varying quantities, provided that the perturbation
is not very large. Since these two amplitudes vary slowly,
the corresponding derivatives with respect to 0 are equal
to £, =—iv,&, and &=V exp[ —(10+86,)], provided
that v, ~I. The amplitude V* is a slowly varying quanti-
ty because £, has been expressed in a frame that rotates
with angular velocity Ic/ry,. As a consequence of
[ V| << |€’|, the position of the cyclotron mode is given
by £~ —(1/iv, )V exp[ —i(10+6,)].

From the previous discussion, the complex position &
and its derivative £’ can be expressed as follows:

) —i(16+6y)

E=&,—(1/iv, )V e (16a)

Fresnel Regime

It is apparent from Eqgs. (16) that it is possible to extract
the bounce and (slow) cyclotron motion in the rotating
frame by inverting Egs. (16). Specifically,

v i

g8 ]

4

&= (17a)

Ve ™ Vp

v, . i(16+6;)
V= ——"—(iv,+E) = .

Ve ™ Vp

(17b)

Figures 3(a) and 3(b) show the real and imaginary com-
ponents of B,V'* for the parameters listed in Table II.
For these same parameters, the actual orbit in the r-z
plane, during the first 2 usec, is given in Fig. 4(a), while
Fig. 4(b) gives the bounce motion associated with the ac-
tual orbit, as computed from Eq. (17a).

B. Slow equations of motion

The method that is used in this section to obtain the
equations of motion of the slowly varying quantities asso-

Lock—in Regime

0.08

0.04

—0.04 |- \

—0.08

FIG. 3. Normalized perpendicular velocity
in velocity space and in the rotating frame [Eq.
(17b)] obtained from the exact equations of
motion in the Fresnel and lock-in regimes (for
the same parameters as in Fig. 2).
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FIG. 4. (a) Exact orbit and (b) bounce
motion orbit obtained from the exact equa-
tions of motion during the first 2 usec, and for
the same parameters as in Figs. 2 and 3.

dail

ciated with the cyclotron and bounce motions has been
devised by Bogoliubov and Mitropolsky [8] and is a per-
turbation approach to the problem. Before this method
can be applied, the simplified Eq. (12) should be written
in a suitable form. For this purpose we express &,§’ in
terms of the quantities £,, V, as follows:

§=§b+ ’ Vc ’ (183)
Vi
'=—iv_§,+V,, (18b)
where
2 172
. by 0
vi——z—i +K , (19a)
rof2go
by="—"7"", (19b)
0 (’}’Bg)oc
rOQZO
Co=————7,
0 (7Bo)ec (19¢)

F=8p+L(1+ A +E*)E' —8C,sin(16+6,) ,

(o] 0.15 0.30 0.45 0.60
r—r, (cm)

K10=C0_% > (lgd)
172

L _ | 1Vl (19)
('}’Bg)o ’}/2—1 ’

In Eq. (19e), ¥, is the zero order, slowly varying quan-
tity associated with V, [see Eq. (26a)]. In addition, v, are
definitely slowly varying quantities, since they depend on
Vol

The equations of motion of ¥, and &, are

SF=A—Ag+ | —i(b—bg)+LHA—ANE +E ) +ibE(E+ES)— —L—y

—H1—nC)EE +E*EX ) —LEXE +HEEY) | — (K| —K g)§— K ¥ +LC(E+E%)

—8CE+(1+K,o)E* +L(E +E*)E sin(10+6)— (8C —8C, )sin(16+6,) .

Ap=1—-C, ,
ro8QL

SCOZ 0 z0 ,
(vBgloc

and b, Cy,K |, have already been defined.

To implement the perturbation theory, we introduce
the parameter €, which indicates the relative smallness of
the various terms. In terms of €, Egs. (20) can be written
as follows:

VI4ilV,=elf.—ilv,—DV,], (23a)

Vi Vv v
Vitiv,V,=——— | fH+8f+iv_ g ———V, |,
Vie—v_ vy vy
(20a)
& Fiv_Ey=——"— |f+8f+iv_ E Yy,
b —5b Vi—v_ —5b vy c H
(20b)
where
(21a)
Y
(vBo)}
(21b)
(22a)
(22b)
[
&, tiev_&,=€f, , (23b)
where
V+
fe=———[f+8f], (24a)
VTV
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fo=————I0F+8f]. (24b)
v,—v_

Assuming that the field error 8B,;<<B,, |A,l <<1,
and since / >>|V,| and v =, the right-hand side of Egs.
(23) is at least of order €. In addition, since |v_| << 1, the
term iv_¢&, in Eq. (23b) is of order €. The terms that are
proportional to the derivatives of v, have been omitted
because they are of higher order.

Furthermore, for high /-mode numbers |£| << |£’| and
in light of Egs. (18), in terms of €, £ and £’ can be written
as follows:

f=e|&+——V. |, (25a)
+

E=—iv_EetV, . (25b)

The perturbation method is applied on Egs. (23) and (25)
by setting

—i(16+8,

V.= Ve eV (£ bl Vo, VE.O+ -+,

&, =&yt €& (&0, &0,V V,00+ -+,

(26a)

(26b)
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where V), &, are the slowly varying quantities associated
with V_,&,, respectively. Then, the slowly varying quan-
tities 4,,4,,... and B,,B,, ... are determined by in-
serting the equations above into Egs. (23) and eliminating
the terms that lead to secular terms for each order of the
perturbation parameter e.

The computation is carried out to second order in €
and it is tedious but straightforward and will not be given
here. To that order, the quantities V|, &,, are equal to

vy 1 j i(16+8,)
=TT A0+%(1+A0)|V0|2+—;—8C0e' o
— L1+ Ag) V2 0T (27a)
i 1 —i(16+6,) i(16+6,)
é’lz—‘v+—_";—:a 6Cge °+5COe 0
+é(1+Ao)V5e‘2"”"+"°’ 27b)

Also, to second order in €, the slow equations for ¥, and
&y are

Vo=€A(EgE8, Vo, VE)+E2 Ay (E0, E8, Vo, VE)+ -+, Vo+ilvy—DVy=f9 . (28a)
(26c)  and
E0=€B(£0,£3, Vo, V3 )+ € By (60,68, Vo, VE )+ -+ Eotiv_&=13", (28b)
(26d) where
J
v ' C
f&=i - X Vo—v_8oVo+boSo(80+E5)Vo— Ao+§0—()“ v_(£—£&5)Vo (29a)
Vi~V (‘)’Bg)(z) 2
Co 2 3 2
+ v, [l 1=Vl = Ag(1+250—Ag(1+ 2|V, |*) 1V,
8C, . 8C, 1
_ +1 2__1p2__ - R
ll+§o+(l+K,o)§0 LV 2— 1V} Bvy 141V Vo
and
(5) — i 1 2 2 nCO 2 2 *
Sb —“ﬁ A0'*’7|Vo| _(boV—+Ao+|Vo| Y5060~ Kzo‘T“’o' +(Ao+|Vo| o |60
+ -—
8C, 1 Kbo 8C,
— 1 e —— 5 S 29b
2, 1+3140+6 2141V, (Vo+V3)+K, Vo 2 Vo (29b)

The quantities for §, and K,, are given in Egs. (13e)
and (13h) with |£’|? replaced by | V| and C replaced by
C,. The slow Egs. (28) and (29) should be complemented
by the derivatives of ¥ and r,Q,,/c. Keeping only the
zero order nonoscillatory parts in Eqgs. (14a) and (14b), we
obtain

§ot+ &5
2

| o

yz

(30)

on‘1+

[
and

_+_ *
4 §02§o

1 (31)

4 c 20 YBelo

, 2
’ono~[’o]Q Y
c

Solutions of the slow equations are shown in Fig. 5 for
the same input parameters (see Table II) used in the solu-
tion of the exact Eq. (4). Figures 5(a) and 5(c) show the
zero order BYY=(yBy)olVol/y versus time, below and
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Fresnel Regime Lock—in Regime
0.10
0.2
9&{' 0.05} o1
o (2) o (©) FIG. 5. [, and yfy vs time obtained from
0 2 4 6 8 0 2 4 6 8 the slow equations of motion [Egs. (28) and
18.8 (29)], in the Fresnel and lock-in regimes and
o 18.2 close to the threshold, for the parameters in
® 184 18.1 Table II.
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Fresnel Regime Lock—in Regime
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above threshold, while Figs. 5(b) and 5(d) show the corre-
sponding zero order (yfBy), versus time. Figure 6 shows
the detuning factor w =v,—I and the real and imaginary
parts of (yBg)oVo/v, below and above threshold. By
comparing Figs. 5 and 6 to Figs. 2 and 3 it is apparent
that the slow equations predict accurately 3, and ySy,
when the initial perpendicular velocity is zero. Above
threshold the detuning factor locks into the resonance,
with only a small variation around zero. A plot of &, is
not given, since it is exactly the same as that in Fig. 4(b).
Obviously, the numerical integration of the slow equa-
tions is much faster than that of the exact Eq. (4) or (12),
since the oscillatory terms have been averaged out.

C. Slow equations of motion
with linearized detuning factor

The slow equations of Sec. III B are still too lengthy to
provide insight into the origin of the threshold behavior.
When 8B,,| V,|/IB,,<<1, the last term in Eq. (29b) can
be neglected and the equation for the bounce motion
simplifies to the equation

Eptiv_

1+L(bov_.+A0+|Voi2) &
KIO

i {Kzo_ +(A0+1V0]2)§0]§3

KIO

—l—I(I—(A0+ Vel , (32
where we have used the fact that |v_| <<v_, and the re-
lation v_v,=—K,,. Equation (32) indicates that the
equilibrium position of the bounce motion is proportional
to the generalized mismatch Ay+ 1|V, |2 Without excep-
tion the computer runs have shown that during the cross-
ing of the resonance the equilibrium position of the
bounce motion hardly changes when the gradient factor
K,,=0. That is not the case when K,;70. Therefore, if
both the initial mismatch and the initial bounce position
&, are zero, the latter quantity remains very small. Under
these conditions, the slow equation for ¥V, simplifies to
the equation

Vo+i

=31V

Vi

=i

Yy (1+‘|V|2 1p2)
('YBB)O 0 0 2

where terms proportional to A3, |V,|% and Ay|V,|? or
higher have been omitted.
To simplify further Eq. (33), it is convenient to intro-
duce the quantity U, by means of the relation
V.= Yo (34)
Y [72~—1—-|U0|2]1/2 :

i ,  (33)

Since, to zero order, Vo is equal to
[(B,+iB,)/Bglexp[i(16+6,)], U, is, to the same order,
equal to Y (B, +iB,)exp[i(160+0,)], and it is easy to show

2051

from Egs. (19¢) and (34) that
(¥Bolo=[r>—1—U,I*1'/. (35)

A straightforward transformation of Eq. (33) from the
V, to the U, variable leads to the slow equation for U,
namely

UL +i 420 Tl U B
vy—Il+— - =—iB, ,
0 + 2v, 0T 3 (7B, 0 0
(36)
where
1 7000
=— 3
) c (37)

Equation (36) indicates that the detuning factor
w=v, —I should be redefined by adding to it the small

correction term
IU0|2 ‘/
Yﬁe)o

Above threshold, the small correction term is important
because it compensates for the small time-dependent con-
tribution of K |y in v [cf. Eq. (19a)]. If the small correc-
tion term is omitted in either Eq. (36) or (33), then, above
threshold, the average value of (yfBg), does not remain
constant but increases with 6. This is contrary to the
solution of either Egs. (28) and (29) or the exact Eq. (4) or
(12).

When the mismatch Ay+1|¥;|?~0 and the initial &, is
also zero, then ;=0 and the relativistic factor y is equal
to y=vy,+7v’'0 [cf. Eq. (30)], where y, and ¢’ are the ini-
tial values of ¥ and the acceleration rate [assumed to be a
constant, and given by Eq. (30) with §,=0], respectively.
Assuming that '8 <<y, and ||Uy|?2—|Uy|?| << 1, where
Uy is the initial value of Uy, the detuning factor can be
linearized with respect to '8 and |Uy|>— | Uy, |2, namely

0

w=wo—ab+18[| Uyl —|Uyl*], (38)
where
c |Ugo|?
wo=v oI+ =2 |Agy— L —2 (39a)
2V+O ('}’Bg)%o
a=v,, 7072 , (39b)
(¥Bo)oo
1
S=v  ——, (39¢)
"y Bebo
boo
b ~Z%
1/4_1:—51ﬂ 1+ b 22 172 ’ (39d)
00
2 “‘wol
(¥Booo=[75—1—1Uwl*1'", (39¢)
and v, b00,C00- A0 K100 are the initial values of

vy,by,c0,A0,K 19, respectively. The dependence of K,
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FIG. 7. B, and yf3, vs time obtained from the slow equations
of motion without acceleration, for the parameters in Table III.

on 6 and on (yBy), has been neglected, since v, is weakly
dependent on K,, when by=I>>1. Also, since
Ay~ —L|UoI? /(yBg)}, Co=~1, and 8=I/(yBy), the
small correction term that is added to the detuning factor
in Eq. (36) provides such a small contribution to 8, of or-
der 1/12, that it has been neglected. Therefore the slow
equation for U, with linearized detuning factor is

Uy+ilwe—ab+18(|Uy12— Uyl U= —iB, .
(40)

This equation predicts the same temporal behavior for
B, and yB, as the original slow Egs. (28) and (29). The
cause of this behavior is the nonlinear term proportional
to |Uy|*—|Ugyl|? (it will be shown shortly that when
8=0, the solution is the Fresnel integral, which is bound-
ed). We conclude that the existence of the Fresnel and
lock-in regimes in the exact Eq. (4) or in Eq. (12) is due to
the dependence of the term 7,Q4,/7B4c upon yB, and the
fact that yf8, depends nonlinearly on the perpendicular
velocity.
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It is interesting to examine the case when there is no
acceleration (@=0), the particles are at exact resonance
(wy=0) and the initial perpendicular velocity is zero
(|Ug|*=0). Then Eq. (40) becomes

Uy+itd|Uy|?Uy=—iB, , (41)

and it can be solved exactly. For that purpose, define
A =|U,y|% Then, separating the real and imaginary parts
of Eq. (41), it is easy to show that

)

Up,=— 8B, 4%, (42a)
1
=——=——A’ 42
UOI ZBO A ’ ( b)
and from the definition of A it follows that
172
8
A'= |A|4B3——4 (43)
16
The exact solution of this differential equation is
224 dx
=2ByA0, (44)
fo [x(1—x)x%+x+1)]'7? 0

where A=(8/8B)!/3. The integral can also be expressed
in terms of the elliptic integral of the first kind [9]
F(p,k),i.e.,

1—A%4
A?A

1
3i/4

172 ‘/—2—_73

F ’
2

2 arccot =31742B,A6 .

(45)

For very small or very large values of the argument of the
arccot, the approximate solution is
2/3

By

8 2
A=(yeB)= l 5 tan p6

V3+tan’ub ’

where u=3'#AB,. The solution of Eq. (43) is bounded.
When uf<<1, 4~=~(By0)* and B, is proportional to 6,
which is the usual linear secular solution. But the non-
linear dependence of Y84 on B, forces the solution to be
bounded. Figure 7 shows B, and y B, versus time for the
parameters listed in Table III, by integrating either the

(46)

TABLE III. Parameters of the run shown in Fig. 7.

Parameter Value
Torus major radius r, 100 cm
Toroidal magnetic field By, 2771 G
Initial generalized mismatch A,+0.5|V,|? 0.0
Field index n 0.5
Rate of change of vertical field B,o 0.0 G/usec
Resonance mode !/ 9
Amplitude of VF error 8B,, 03 G
Constant phase of VF error 6, 0.0
Gradient of VF error K, 0.0
Initial normalized toroidal momentum ¥y 18.1753
Initial normalized vertical velocity S8, 0.0
Initial phase of vertical velocity @g 0.0
Initial normalized radial bounce displacement &, 0.0
Initial normalized vertical bounce displacement &, 0.0

Integration time ¢,

8 usec
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slow Eq. (40) or (36), or Eqgs. (28) and (29). Integration of
the exact Eq. (4) for the same parameters also gives iden-
tical results. The peak value of B, and the period
(m/u)rg/c as computed from the approximate Eq. (46)
are 0.0757 and 1.247 usec, respectively, in good agree-
ment with Fig. 7.

In conclusion, our analysis indicates that there is a
completely different behavior near a resonance with or
without acceleration. Even at exact resonance, 3, is al-
ways bounded without acceleration, but it is unbounded
with acceleration and in the presence of a large field er-
ror.

IV. ASYMPTOTIC BEHAVIOR
IN THE FRESNEL AND LOCK-IN REGIMES

In order to study the asymptotic behavior of Eq. (40), it
is convenient to transform it into dimensionless form.
For this purpose, when a >0, we introduce the quantities
a=Val, o,=wyVa, €=(8/2a**"?B,, and
0,=(8/2a'?)U,.

Then, Eq. (40) becomes

du,

- +ilog—a+|0,12—|Up 210, = —i&, @47

where Uy, is not equal to the initial value of 00 and will
be defined shortly. Let &,  be the threshold value of &
When €<<&,,, i.e., when B}8/(2a%/%) << €%, the change
in ﬁo associated with the crossing of the resonance is

small, i.e., || Oy|>—| ﬁOOIZI << 1, and Eq. (47) simplifies to
dt,
do

The crossing of the resonance occurs at o =0, i.e., at
0,=w,/a. The solution of this equation is

+i(og—o)0y=—i€. 48)

i(1/2)00—0y)? —i(1/2)02
O,=e O Ugoe 0

o770, —it1/2)0
—ief Temi1Mygr | (49)
—0,
0

i.e., the particular solution can be written in terms of the
Fresnel integral. When o,>>1, the asymptotic expres-
sion of the Fresnel integral leads to the approximate solu-
tion

—i(wd /2a)
e 1 wo a

Uozei(wz/Za)

Bo r—wiVa e,
—l‘—/ifw e T/ ger | (50)

where the solution has been transformed to the original
variables and w=wy—af. U, is very sensitive to the
phase wj}/2a, when Uy +By/w,#0. Since a<<1, a
small change in the initial time interval 7y=(ry/c)wy/a
from the resonance [e.g., a small change in the initial
value of (yfBy)y] will cause a very different behavior of
|U,| versus time. To alleviate this problem, we define the
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initial condition of Eq. (50), and also of Eq. (40), by
means of the initial variable Uy, i.e.,
~ i(w? B
U(X):Uooe:(wo/Za)___g , 51)
Wo
where 17002(6/2011/2)_1?]00 and 6’00 is the value in Eq.

(47) around which the detuning factor is linearized. Then
Eqg. (50) becomes

, . B —w/Va g g
Uozeuwz/zm Uoo‘i“‘%f WIS mitl/g2ds | (5
a - 0

and is independent of 7, but it does depend on the initial
phase of Uy. Equation (52) indicates that as 6 tends to
minus infinity, ||U,|?>—|Tq|?| tends to zero. Therefore
|Ugol is the appropriate constant around which the de-
tuning factor should be linearized, and wg,,a,5 become
functions of Uy, (and not of Uy,). Because |U,| tends to
|Ug| as 6— — o we shall call Uy, the asymptotic initial
value of Uy,. When 6>>1 (or |w|/Va>>1), the asymp-
totic value of | U] is

|Ugl ~|Tpo—iBoV/al1+i)| . (53)

Therefore, when Uy,#0, the final value of~| U,| could
be smaller than its asymptotic initial value |Upy|. When
Uy, =0, the asymptotic value of 3, is

By

B(O>1)=V27/a——— ,
' Yot7v'0

(54)

where |y'6| <<y,. Since the width of the Fresnel integral
is Ao =27'"?, we conclude that the time At it takes for
the resonance to be crossed is

rg —
At=2—cq—\/77/a . (55)

Therefore the final 3, and At are inversely proportional
to the square root of the acceleration rate in the Fresnel
regime, provided € <<é&,;,,. Figure 8 shows B\* and (yf8,),
versus time for the parameters of Table II, except that
6B,;=0.1 G, i.e., far away from the threshold. Notice
the smooth variation of B’ during the first microsecond
and compare to the oscillatory behavior that occurs in
Fig. 5(a). The difference is due to the choice of the initial
condition. In Fig. 8(a), Uy=0, while in Fig. 5(a),
Uy =0. When w>0 and |w|/Va>>1, i.e., well before
the resonance crossing, the asymptotic value of U,, as
given by Eq. (52), is

U0~fjooei(w2/2a)_ﬁ . (56)
w
When UOOZO, we have |Uol = —B,/|w|, which explains
the smooth variation of B{* in Fig. 8(a).

We have shown above that if the initial condition,
given by Eq. (51), is chosen the solution of Eq. (40), in ei-
ther the Fresnel or the lock-in regime, is independent of
the initial time interval 7, from the resonance, when
wo/V'a>>1. This is no longer true if the initial condi-
tion given by Eq. (51) is chosen for the solution of Eq.
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FIG. 8. B, and ¥, vs time from the slow equations of motion
in the Fresnel regime far away from the threshold, i.e., for the
parameters of Table II, except that 6B,,=0.1 G [the initial con-
dition is given by Eq. (51), with Uy, =0].

(36), which has a nonlinear detuning factor w. The non-
linear dependence of w on 6 causes the solution to depend
on 75. To second order in 0, the detuning factor is given
by

w=wo—ab+1a,0*+18[|Uy|*—|Uyl?], (57)

where wg,a,8 have already been defined, Uy, will be
redefined shortly, and

(Bodoo | 7ov’
3— 3 T a
Yo (vBo)oo

When w/Va >>1, i.e., well before the resonance cross-
ing, the term proportional to 6 can be neglected in Eq.
(57), and the asymptotic solution of Eq. (40) is

9 B, B,
Ug~exp [—i de] Up+—2 | —=2, (59
0~ €Xp lfo w ot (59a)
where
w=w,—ab+1la,6”. (59b)
Inverting Eq. (59b), we get (since a,6% <<1)
w—w a
O0=———+ 2 (w—wy)?, (60)
a 2a
and, therefore,
2
00 do= Wo | Wo e RPN
S wdo= |1+ oo |20 1T e 3w |50
(61)

Instead of Eq. (51), where a,=0, if we redefine the initial
condition by the relation
i1+aywy/6a*wd2a_ Bo

=U — 62
UOO Uooe wo > ( )
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then Eq. (59a) becomes

—i{l+(ay /e wy— (23w ]jw2a_ Bo

Uy~ Uye (63)

w
Notice that U, depends on w, and, therefore, on .
However, if a,w,/a?<<1, then the dependence is weak
and the solution of Eq. (36) with the initial condition
given by Eq. (62) is also weakly dependent on 7,. Equa-
tion (63) indicates that as 6 tends to minus infinity,
[|1Uo|>—1U|?| tends to zero, and, therefore, Uy, is the
appropriate parameter around which the detuning factor
should be expanded. Also, wy,a,a,,6 are functions of
Uy As before, we call Uy, the asymptotic initial value
of Uy. From this point on, the solutions of Egs. (28) and
(29) are obtained using the initial condition computed
from Eq. (62). If such an approach is not followed, each
small change in the initial parameters, e.g., (¥Bg)oo> B an»
etc., would produce a different U, which could be either
in the Fresnel or the lock-in regime, to the extent that
one might get the impression that the behavior is ran-
dom.

An analytic expression of 310) on O, above threshold,
can be easily obtained assuming that (yf,), remains al-
most constant. This assumption is justified by the numer-
ical solution of either Eqgs. (28) and (29) or Eq. (36). Re-
sults are shown in Fig. 9(b) for the same parameters listed
in Table II, except that 6B,,=0.4 G. In contrast to the
solutions of Egs. (28) and (29) or Eq. (36), Eq. (40) pre-
dicts that (yBy)g initially behaves in the same manner, but
gradually increases as 0 (or time) increases to very large
values. The exact Eq. (4) or (12) gives also an average
YByg that varies as in Fig. 9(b). Since yj3, remains con-
stant, on the average, after the resonance has been
reached, we conclude that

(yo+7v'6)*—1—|Uyl*>=const . (64)

If the initial value (700 =0, then at 0=0,=w,/a, we have
|Uyl =0 and y =y,+7'6,, and Eq. (64) leads, to zero or-
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FIG. 9. Asymptotic behavior of 8, and yf34 above the thresh-
old (lock-in regime) for the parameters of Table II, except that
8B,,=0.4 G.
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der in 3, to the expression

1+—2?;—<9+90> ,
B~ 2 2 (9-g,. (65)
1+Xg| Yo
Yo

When y'6 <<y, B, is proportional to the square root of
time, which is demonstrated in Fig. 9(a) and also B, is
proportional to the square root of the acceleration rate
v'. In contrast, below threshold, it has been shown that
B, is inversely proportional to the square root of y’.

V. DYNAMIC STABILIZATION
AND THRESHOLD LAW

There are at least three possible ways to cross a cyclo-
tron resonance without locking into it: (a) by reducing or
eliminating the field errors, (b) by accelerating fast
through the resonance, and (c) by adding a small time-
dependent toroidal field that provides dynamic stabiliza-
tion. In effect, it will be shown that the dynamic stabili-
zation is equivalent to increasing the acceleration rate.
The effectiveness of the second stabilizing mechanism is
discussed at the end of this section. Here, we analyze the
effectiveness of the stabilizing toroidal field, which is as-
sumed to be sinusoidal with amplitude 6B 4, and period 7
which is much larger than the time At is takes to cross
the resonance. The total toroidal field is described by

L 2wt —ty)
Bw(t)=Bm+8B90sm—T—— , (66)

where t; is the time delay. Inserting Eq. (66) into Egs.
(13b) and (19b) [with the initial value B(0) in by,] and
linearizing the detuning factor in Eq. (36), the parameters
a,a, become

5990 27Ttd
a='V+1 A’O_KO Qm(o) Ccos T y (67a)
( ) ro6Q 27t
a,= 3——@ Ao+ ——2 26in a1,
Yo (YBG)OOC
(67b)
where
ho=— (68a)
(7Bsg)oo
2 o Yo
= 68b)
*o T C ('}’Bg)oo (

and w,,8,v,,; are given by Egs. (39a), (39¢), and (39d).
The expansion of the detuning factor in Eq. (36) is done
around Uy, and not around the initial value Uy, so that
all the parameters given above depend on U,,. For sim-
plicity, let us assume that t;=0. If the toroidal field de-
creases as the resonance is being crossed, i.e., if 8By, <0,
then according to Eq. (67a) a becomes larger. This is
equivalent to replacing ¥’ in a with a larger effective
value. It is shown shortly that the larger the acceleration
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FIG. 10. Threshold law in the presence of a stabilizing time-
dependent toroidal magnetic field, i.e., 8By=28B gsin(27t /7)
and zero initial perpendicular velocity (T =0).

rate, the larger becomes the threshold value. Therefore a
small time-dependent toroidal field with negative time
derivative does provide dynamic stabilization.

The threshold law is obtained by determining numeri-
cally the threshold value of € in the dimensionless Eq.
(47) in the special case when Uy, =0. Then the threshold
law is expressed by the relation

_8
2a3/2

Figure 10 gives the threshold values of 8B, as a function
of 8B, for different acceleration rates, when By, =2771
G, 7=50 usec, and [ =9. The beneficial effect of a large
acceleration rate or a small time-dependent toroidal field
becomes obvious from this figure. Each line in the figure
separates the Fresnel from the lock-in regimes for each
different value of the acceleration rate.

B3, =€%,=1.36. (69)

VI. DYNAMIC BEHAVIOR
WITH INITIAL PERPENDICULAR VELOCITY

When the asymptotic initial value of U, is not zero, the
display of the dynamic behavior close to the resonance
becomes more difficult, because the dynamics depend on
the initial phase as well as on the initial amplitude of T,.
The results are conveniently presented as contour plots
(i.e., the resonance diagrams) of the final B, =|U,|/y in
the B{°(0), @, plane, where 8{°(0) and @, are the ampli-
tude and phase of the asymptotic initial value Ty, /7.
The rest of the parameters, including the interval of in-
tegration over 6 or time, are kept constant. Since the
final B, becomes large in the lock-in regime while it is
bounded in the Fresnel regime, the contours are very
dense at the boundary between the two regions.

Figure 11 shows the two regimes for the parameters
listed in Table IV. Although the results shown in Fig. 11
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TABLE IV. Parameters of the run shown in Figs. 11 and 12.

Parameter Value
Torus major radius r, 100 cm
Toroidal magnetic field By 2771 G
Initial generalized mismatch A,+0.5|V,|? 0.0
Field index n 0.5
Rate of change of vertical field B,, 2,4 G/usec
Resonance mode [ 9
Amplitude of VF error 8B, 0.195,0.3 G
Constant phase of VF error 6, 0.0
Gradient of VF error K, 0.0
Amplitude of stabilizing toroidal field 8B 4 0,—200 G
Period of stabilizing toroidal field 7 70 usec
Time delay of stabilizing toroidal field ¢, 0.0 usec
Initial normalized toroidal momentum ¥, 17.922

Initial normalized radial bounce displacement &,

0.0,0.003,—0.003

Initial normalized vertical bounce displacement &g, 0.0

Integration time ¢,

8 usec

have been obtained by integrating Egs. (28) and (29), E

(36) or (40) gives the same results, provided that there is
negligible bounce motion. In Fig. 11(a), 8§B,, has been
chosen equal to 0.195 G, which is very close to the
threshold value when 8\”(0). By increasing the field er-
ror amplitude from 0.195 to 0.3 G, the lock-in regime
dominates for small initial B°’(0) for the entire range of

initial phase angles as shown in Fig. 11(b). By turning on
the stabilizing field, the Fresnel region increases at the ex-
pense of the lock-in region. Results are shown in Fig.
11(c) for 6B,,=0.195 G and 8B4 =—200 G. This figure
should be compared with Fig. 11(a) that has the same
field error amplitude but not stabilizing field. Finally, in
Fig. 11(d) the acceleration rate has been increased from

@1 oasf ()
~~ h gres‘nel 3 \Lo\ck-m
(@) egime | i
N—
=)
€
Q.
0.18 0.18
/o-\ Fresnel»
N~ 0.12 [=Besime 0.12 }
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Q. § \1
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FIG. 11. Resonance diagrams, i.e., contour plots of the final 8, when the initial amplitude and phase of the normalized perpendic-

ular velocity Uy, /y, are not zero, for the parameters in Table IV, and in (a) 8B,,=0.195 G, 6B =0.0 G, B,,=
8B,0=0.3 G, 8By =0.0, B,,=2 G/usec; (c) 8B,,=0.195 G, 8By =

8B g =0.0 G, B,o=4 G/usec.

2 G/usec; (b)
—200 G, =70 usec, B,=2 G/usec; (d) 8B,,=0.195 G,
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B,;=2 to 4 G/usec, while 6B,,=0.195 G and 6By =0.
Again, comparison of Fig. 11(d) with Fig. 11(a) shows
that the Fresnel region has increased at the expense of
the lock-in region. When the electrons in the ring are
uniformly distributed over the initial phase angle, the res-
onance diagrams give, for each initial 8{°)(0), the percen-
tage of the ring that crosses the resonance and the per-
centage that locks into it.

In all the results presented so far, the equilibrium posi-
tion of the bounce motion was located at the origin of the
coordinate system [i.e., Agy+|UTq|2/2(¥Bg)3=0] and
the amplitude of the bounce motion was selected
negligibly small (since the initial £,=0). If the equi-
librium position is chosen off the origin [i.e.,
Ago+ U0 l?/2(yBg)3#0], and the amplitude of the
bounce motion is negligibly small, by judicially choosing
&o00> the resonance diagrams remain the same for the same
set of parameters. When Agy+| Uy |2/2(yB)3:70, and
in the special case of a field index n =1, the parameters
v' and ry/c in Eqgs. (68a) and (68b) should be replaced by
(I+A)y" and (1+Ary/c, respectively, where
Ao=[Ag+|Txl*/2(¥Be)3%]1/K 00- Also, the initial
bounce position must be equal to £y=A;5, to have
bounce motion with negligible amplitude. Finally, the
term

.nu\(

a)—
Fresnel ]

§ Lock-in ¥
Regime

% (degq)

FIG. 12. Resonance diagrams for the same parameters as in
Fig. 11(a), except that the radius of the bounce motion is 0.3 cm
in both (a) and in (b) and in (a) the initial position of the bounce
motion, i.e., £, =(0.3 cm, 0.0 cm); in (b) £p=(—0.3 cm, 0.0
cm).
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(v_—2by&p)
v="2bobo 2 (yBoR

should be added to the detuning factor in Eq. (36), and,
therefore, the term (v_,—2by,6y0)A o should be added to
wy in Eq. (39a), where v_ is the initial value of the
bounce frequency.

When there is a small bounce motion superimposed to
the cyclotron motion there is a modest change of the res-
onance diagrams. This becomes apparent by comparing
Fig. 11(a) with Fig. 12. These figures have been obtained
from Egs. (28) and (29) with the same parameters, except
for the initial bounce position. In Fig. 11(a), the initial
position of the bounce motion is at the origin, while in
Fig. 12(a), it is at (0.30 cm, 0.0 cm) and in Fig. 12(b) it is
at (—0.30 cm, 0.0 cm). In the latter two cases, the ampli-
tude of the bounce motion is 0.30 cm.

11Ul
A0+_— /Klo

VII. MULTIPLE CROSSING OF A RESONANCE

When a small toroidal field with sinusoidal time depen-
dence is added to the main toroidal field By, the detun-
ing factor may become zero more than once, as time
evolves, for the same resonance mode I. This is defined as
a multiple crossing of the resonance mode /. Results are
shown in Fig. 13. These results have been obtained from
Egs. (28) and (29) for the parameters listed in Table V and
6B,,=0.35 G. Figure 13(a) shows that the detuning fac-
tor w becomes zero five times and a Fresnel jump occurs
each time the resonance mode [/ is crossed. It is not
necessary that all the crossings have a Fresnel jump. A
lock into the resonance could occur at some crossing if

0.6
) 0 \
| /
O -0.
N 0.6
-1.2 (a)
0 20 40 60 80
24
o
ey
¥ 22
<
20 (b)
o] 20 40 60 80
s 0.08
=
0.04
(c)
0]
0 20 40 60 80

Time (usec)

FIG. 13. v,—1, yBy, and B, vs time during a multiple cross-
ing of the resonance / =8, obtained from the slow equations of
motion [Egs. (28) and (29)], for the parameters of Table V, and
5B,,=0.35G.
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TABLE V. Parameters of the run shown in Fig. 7.

Parameter Value
Torus major radius r, 100 cm
Toroidal magnetic field By, 2771 G
Initial generalized mismatch A, 0.0
Field index n 0.5
Rate of change of vertical field B,, 0.8 G/usec
Resonance mode !/ 8
Amplitude of VF error 8B, 0.35,1.0 G
Constant phase of VF error 6, 0.0
Gradient of VF error K, 0.0
Amplitude of stabilizing toroidal field 6By, —200 G
Period of stabilizing toroidal field = 20 usec
Time delay of stabilizing toroidal field ¢, 0.0 usec
Initial normalized toroidal momentum ¥f3, 19.875
Initial normalized vertical velocity S, 0.0
Initial phase of vertical velocity ¢q 0.0
Initial normalized radial bounce displacement &g, 0.0
Initial normalized vertical bounce displacement &, 0.0
Integration time ¢, 80 usec

the asymptotic initial velocity is in the lock-in regime of
the resonance diagram. As a rule, the detuning factor
follows the time-dependent toroidal field. Figure 13(b)
shows that when all the crossings are in the Fresnel re-
gime, yB, follows y between crossings, while Fig. 13(c)
shows that there are five Fresnel jumps in 3,. In contrast,
when the ring locks into the resonance, then ¥[34 follows
the time-dependent toroidal field while w remains very
small. This is shown in Fig. 14, obtained by integrating
Egs. (28) and (29), for the parameters listed in Table V
and 8B,,=1.0 G. According to Fig. 14(a) the first cross-

0.50
[u_
lo 0.25
N L (a)
o orsramam gl
0 20 40 60 80
22
—~ (b)
> 21
Q)
S~ 20
~ I\
19
0 20 40 60 80
0.6
°c
= 4 0.4
Q.
0.2
(c)
0
0 20 40 60 80

Time (usec)

FIG. 14. v.—1, yB, and B, vs time during a multiple cross-
ing of the resonance /=28 under the same conditions as in Fig.
13, except that 8B,,=1.0 G.

ing occurs at 1 usec and the ring locks into the resonance
up to approximately 10 usec. As long as it remains
locked, w =0, while 3, follows the time varying toroidal
field [Fig. 14(b)]. Figure 14(c) shows that just before 10
usec, 3, decreases to zero, while y B, increases at a faster
rate than Y. Since at this time
(¥B)*=y?—1—(yBy)*=~0, a continuously rising yB,
would require a negative (yf,)% which is an unphysical
sitvation. Thus the ring unlocks from the resonance.
The same cycle is repeated up to 45 usec, when 3, due to
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FIG. 15. v.—1, vBy, and 3, vs time during a multiple cross-
ing of the same resonance / =8, under the same conditions as in
Fig. 13, but obtained by integrating the exact equations of
motion [Eq. (4)].
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the rise of its average value, cannot become zero. After
this time, ¥, remains locked to the sinusoidal variation
of the field, while w remains almost zero. Therefore the
next resonance mode / +1 is never reached, in spite of
the fact that 7y keeps increasing. The energy is
transferred to y3, rather than ¥, The exact Eq. (4) or
(5) or the nonlinear slow Eq. (36), give identical results to
those obtained from Egs. (28) and (29) which are shown
in Fig. 14. However, this is not the case with Fig. 13.
Results from the integration of the exact Eq. (4) for the
parameters listed in Table V and 8B,;,=0.35 G are shown
in Fig. 15. The detuning factor and yf3, in Fig. 15(a) and
15(b) are very similar to the results shown in Figs. 13(a)
and 13(b). However, the transverse velocity in Fig. 15(c)
is similar to that of Fig. 13(c) until the third crossing
occurs at 19 usec. The difference is due to the fact that
the slow Egs. (28) and (29) are approximate, and the
phase of B, computed from the exact and the slow equa-
tions becomes gradually different for long times. There-
fore, for long times, when many resonances are to be
crossed or multiple crossing occurs, the exact Eq. (4)
should be used. The slow equations provide a valuable
insight in the dynamic behavior close to a particular reso-
nance, but are not reliable over long periods of time.

VIII. SUMMARY AND CONCLUSIONS

Magnetic-field errors excite resonances that the elec-
tron ring must cross during acceleration. In the presence
of a VF error, there is a threshold value of the field error
amplitude that separates two distinct regimes. Below
threshold (Fresnel regime) and for zero initial (700, the
perpendicular velocity increases by a finite amount as the
resonance is crossed. The increase as well as the time it
takes to cross the resonance are inversely proportional to
the square root of the acceleration rate. Above threshold
(lock-in regime), the perpendicular velocity is proportion-
al to the square root of the acceleration rate and increases
with the square root of time, while y3, remains on the
average constant, and the detuning factor remains ex-
tremely small. Therefore the ring locks into the reso-
nance. The dynamic behavior without acceleration is en-
tirely different even at exact resonance. The perpendicu-
lar velocity is proportional to time initially, but, due to
the nonlinearities in the equations of motion, it reaches a
maximum, then it decreases to zero and repeats periodi-
cally the same cycle. Therefore it is bounded.

The threshold is predicted by the slow equations of
motion that have been derived by averaging out the fast
cyclotron motion. The origin is the nonlinear depen-
dence of ¥y, on the perpendicular velocity and the fact
that the cyclotron frequency is inversely proportional to
¥Bo. By the appropriate choice of the initial conditions it
was shown that the solutions of the slow or the exact
equations of motion could be made weakly dependent on
the initial time interval from the resonance. Possible
ways to increase the threshold have been discussed. It
has been shown, that the threshold value of the VF error
amplitude is proportional to the 3 power of the accelera-
tion rate. Dynamic stabilization, i.e., the addition of a
small time-dependent field to the main toroidal field, also
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provides an effective increment to the acceleration rate, if
it has a negative time derivative, and, therefore, increases
the threshold. When the initial perpendicular velocity is
not zero, the dynamic behavior has been presented by
means of the resonance diagrams. These diagrams pre-
dict that a small bounce motion has only a modest effect
on the Fresnel and lock-in regimes. Finally, the multiple
crossing of the same resonance has been analyzed in the
presence of dynamic stabilization and we have concluded
that for long periods of time the exact equations of
motion should be used.

Following the successful demonstration of acceleration
in the NRL device, a concerted effort was made to locate
and eliminate or reduce the various field disturbances
that may excite the cyclotron resonance. Reduction in
many of these field errors, together with the operation of
higher toroidal and strong focusing fields led to beam en-
ergies in excess of 20 MeV, while the trapped current was
above 1 kA.

In addition, three different cyclotron resonance stabili-
zation techniques were tested in the NRL modified batat-
ron: enhancement of the acceleration rate, dynamic sta-
bilization or tune jumping, and avoidance of the reso-
nance.

The damage done to the beam at each resonance de-
pends on the speed with which the resonance is crossed.
By enhancing the acceleration rate the resonance is
crossed faster and thus the damage inflicted to the beam
is reduced. To achieve higher acceleration rate, the verti-
cal field coils were divided into two halves with midplane
symmetry and powered in parallel. The experimental re-
sults show a striking reduction of the beam losses at
/=12, 11, and 10, when the acceleration rate increased
from 0.69 to 1.93 G/usec.

The crossing of the resonance can be also speeded up
by modulating the toroidal magnetic field with a rapidly
varying ripple. This is the dynamic stabilization or tune
jumping technique and requires a carefully tailored pulse
to be effective over many resonances. These results have
been reported [10] previously and in general they are in
agreement with the predictions of Sec. V and extensive
computer calculations.

It is apparent from the resonance condition that when
By /B,,=const*integer, the cyclotron resonance is not
excited. To test this prediction, a linearly rising toroidal
field ramp AB, was superimposed on the main toroidal
field. During the rise time of the ramp (~ 100 usec), the
ratio By, +AB,/B,,~const*integer. The experimental
results indicate that during this time period the beam
losses are completely suppressed. Although very power-
ful, the resonance avoidance technique by keeping the ra-
tio By, /B,o=const#integer is not practical because to
be effective over the entire spectrum of / requires very
high toroidal field. Among the three stabilization tech-
niques tested, acceleration of the beam at a higher ac-
celeration rate appears to have the highest practical po-
tential.
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